通常,机器学习应用程序必须应对动态环境,其中数据以潜在无限长度和瞬态行为的连续数据流的形式收集。与传统(批量)数据挖掘相比,流处理算法对计算资源和对数据演进的适应性具有额外要求。它们必须逐步处理实例,因为数据的连续流量禁止存储多次通过的数据。合奏学习在这种情况下取​​得了显着的预测性能。实现为一组(几个)个别分类器,合奏是自然可用于任务并行性的。但是,用于捕获概念漂移的增量学习和动态数据结构增加了缓存未命中并阻碍了并行性的好处。本文提出了一种迷你批处理策略,可以改善多核环境中用于流挖掘的多个集合算法的内存访问局部性和性能。借助正式框架,我们证明迷你批量可以显着降低重用距离(以及缓存未命中的数量)。在六种不同的最先进的集合算法上应用四个基准数据集的六种不同特性的实验显示了8个核心处理器上高达5倍的加速。这些效益牺牲了预测性能的少量减少。
translated by 谷歌翻译
长期负载请求继续限制高性能处理器的性能。为了提高处理器的潜伏能力,建筑师主要依赖两种关键技术:复杂的数据预脱水和较大的芯片固定缓存。在这项工作中,我们表明:1)即使是先进的先进预摘要,也只能预测一半的外芯片负载请求,平均在广泛的工作负载中,而2)由于尺寸的增加,并且片上缓存的复杂性,花片载荷请求的延迟的很大一部分用于访问片上缓存层次结构。这项工作的目的是通过从其关键路径上删除片上缓存访问延迟来加速片外负载请求。为此,我们提出了一种称为爱马仕(Hermes)的新技术,其关键想法是:1)准确预测哪些负载请求可能会偏离芯片,2)猜测预测的芯片外载荷直接从主芯片负载所需的数据内存,同时也同时访问此类负载的高速缓存层次结构。为了启用爱马仕,我们开发了一种新的轻巧,基于智障的外芯片加载预测技术,该技术学会使用多个程序功能(例如,程序计数器的序列)来识别芯片外负载请求。对于每个负载请求,预测器都会观察一组程序功能,以预测负载是否会外芯片。如果预计负载将放置芯片,Hermes一旦生成负载的物理地址,就会直接向内存控制器发出投机请求。如果预测是正确的,则负载最终会错过缓存层次结构,并等待正在进行的投机请求完成,从而将芯片上缓存层次结构访问延迟隐藏在离芯片外负载的关键路径中。我们的评估表明,爱马仕显着提高了最先进的基线的性能。我们开源爱马仕。
translated by 谷歌翻译
准确的交通预测是使流量管理等流量管理的关键要素,例如重新路由汽车减少道路拥堵或通过动态速度限制来调节流量以保持稳定的流量。表示流量数据的一种方法是以时间更改的热图可视化流量的属性(例如速度和音量)的形式。在最近的作品中,U-NET模型在热图预测的交通预测上显示了SOTA性能。我们建议将U-NET体系结构与图层相结合,该层面可以改善与香草U-NET相比,将空间概括到看不见的道路网络。特别是,我们专门将现有的图形操作对地理拓扑敏感,并概括合并和升级操作以适用于图形。
translated by 谷歌翻译